8 X. D. Dongfang Dongfang Modified Equations of Molecular Dynamics
[1] Halliday, D., Resnick, R. & Walker, J. Fundamentals of
physics extended. 554-557 (John Wiley & Sons, 2010).
[2] Zemansky, M. W. & Dittman, R. H. Heat and thermody-
namics : an intermediate textbook. 127-134 (McGraw-Hill
Education, 1997).
[3] Dongfang, X. D. On the relativity of the speed of light.
Mathematics & Nature 1, 202101 (2021).
[4] Dongfang, X. D. The Morbid Equation of Quantum Num-
bers. Mathematics & Nature 1, 202102 (2021).
[5] Greiner, W., Neise, L. & St¨ocker, H. Thermodynamics and
statistical mechanics. 10-13 (Springer, 1999).
[6] Lewis, J. T. Heat and thermodynamics: a historical perspec-
tive. (Greenwood Press, 2007).
[7] Kotz, J., Treichel, P. & Townsend, J. Chemistry and chemi-
cal reactivity. 524-525 (Cengage Learning, 2011).
[8] Daussy, C. et al. Direct determination of the Boltzmann
constant by an optical method. Physical Review Letters 98,
250801 (2007).
[9] Chen, R. Correction to Solution of Dirac Equation. arXiv
preprint arXiv:0908.4320 (2009).
[10] Pathria, R. Statistical mechanics. 127-156 (Butterworth
Heinemann, Oxford, UK, 1996).
[11] Reichl, L. E. A modern course in statistical physics. 16-90
(University of Texas press Austin, 1980).
[12] Lastovka, V. & Shaw, J. M. Predictive correlations for ide-
al gas heat capacities of pure hydrocarb ons and petroleum
fractions. Fluid Phase Equilibria 356, 338-370 (2013).
[13] Nagata, S. An alternative expression to the Sackur-Tetrode
entropy formula for an ideal gas. Chemical Physics 504,
8-12 (2018).
[14] Shekaari, A. & Jafari, M. Effect of pairwise additivity on
finite-temperature behavior of classical ideal gas. Physica
A: Statistical Mechanics and its Applications (2018).
[15] Abulencia, J. P. & Theodore, L. Fluid flow for the practicing
chemical engineer. 109-119 (John Wiley & Sons, 2011).
[16] Putintsev, N. & Putintsev, D. in Doklady Physical Chem-
istry. 278-282 (Springer).
[17] Luiten, O., Reynolds, M. & Walraven, J. Kinetic theory of
the evaporative cooling of a trapped gas. Physical Review A
53, 381 (1996).
[18] Dodonov, V. & Lopes, V. Increase of temperature of an ide-
al nondegenerate quantum gas in a suddenly expanding box
due to energy quantization. Physics Letters A 373, 45-48
(2008).
[19] Deeney, F. & O’Leary, J. The internal energy and thermo-
dynamic behaviour of a boson gas below the Bose–Einstein
temperature. Physics Letters A 375, 1637-1639 (2011).
[20] Brilliantov, N. V. & P¨oschel, T. Deviation from Maxwell
distribution in granular gases with constant restitution coef-
ficient. Physical Review E 61, 2809 (2000).
[21] Nelson,P. Biological physics. 71-80(Freeman New York,2004).
[22] Guti´errez, G. & Y´a˜nez, J. M. Can the ideal gas feel the shape
of its container? American Journal of Physics 65, 739-743
(1997).
[23] Elliott, J. R. & Lira, C. T. Introductory chemical engineering
thermodynamics. 185-186 (Prentice Hall PTR Upper Saddle
River, NJ, 1999).
[24] Reichl, L. E. A modern course in statistical physics. Vol. 89
16-90 (University of Texas press Austin, 1980).
[25] Greywall, D. S. Specific heat of normal liquid He 3. Physical
Review B 27, 2747 (1983).
[26] Basak, D., Overfelt, R. & Wang, D. Measurement of spe-
cific heat capacity and electrical resistivity of industrial al-
loys using pulse heating techniques. International Journal
of Thermophysics 24, 1721-1733 (2003).
[27] Reif, F. Fundamentals of statistical and thermal physics.
153-159 (Waveland Press, 2009).
[28] Huang, K. Introduction to statistical physics. 7-40 (CRC
Press, 2001).
[29] Tien, C. L. & Lienhard, J. H. Statistical thermodynamics.
Revised printing edn, 199-210 (Washington, DC, Hemisphere
Publishing Corp., 1979).
[30] Helrich, C. S. Modern thermodynamics with statistical me-
chanics. 121-149 (Springer, 2009).
[31] Montvay, I. & Pietarinen, E. The Stefan-Boltzmann law at
high temperature for the gluon gas. Physics Letters B 110,
148-154 (1982).
[32] De Lima, J. & Santos, J. Generalized Stefan-Boltzmann law.
International Journal of Theoretical Physics 34, 127-134
(1995).
[33] Blevin, W. & Brown, W. A precise measurement of the
Stefan-Boltzmann constant. Metrologia 7, 15 (1971).
[34] MacDonald, W. M., Rosenbluth, M. N. & Chuck, W. Re-
laxation of a system of particles with Coulomb interactions.
Physical Review 107, 350 (1957).
[35] Krook, M. & Wu, T. T. Formation of Maxwellian tails. Phys-
ical Review Letters 36, 1107 (1976).
[36] Vergados, J. D., Hansen, S. H. & Host, O. Impact of go-
ing beyond the Maxwell distribution in direct dark matter
detection rates. Physical Review D 77, 023509 (2008).
[37] Einstein, A. On the electrodynamics of moving bodies. An-
nalen der Physik 17, 50 (1905).
[38] Dermer, C. The production spectrum of a relativistic
Maxwell-Boltzmann gas. The Astrophysical Journal 280,
328-333 (1984).
[39] Bisnovatyi-Kogan, G., Zel’dovich, Y. B. & Syunyaev, R.
Physical Processes in a Low-Density Relativistic Plasma. So-
viet Astronomy 15, 17 (1971).
[40] Dunkel, J. & H¨anggi, P. Theory of relativistic Brownian mo-
tion: The (1+ 3)-dimensional case. Physical Review E 72,
036106 (2005).
[41] Cercignani, C. & Kremer, G. M. The Relativistic Boltzmann
Equation:Theory and Applications. 31-64 (Springer, 2002).
[42] Gonzalez-Narvaez, R., de Parga, A. A. & de Parga, G. A.
Mixing of relativistic ideal gases with relative relativistic ve-
locities. Annals of Physics 376, 391-411 (2017).
[43] Mirtorabi, M., Miraboutalebi, S., Masoudi, A. & Matin, L.
F. Quantum gravity modifications of the relativistic ideal gas
thermodynamics. Physica A: Statistical Mechanics and its
Applications (2018).
[44] Dongfang, X. D. Mathematics & Nature, Physics and math-
ematics research articles. (2021).
Guided Reading
For decades, I have systematically and carefully s-
tudied the basic theories of physics and found that not
all physical inferences are correct. When studying the
generalized wave equation and its exact solution, I found
that the classical equation of the ideal gas temperature
was wrong, and found the cause of the error. In this pa-
per, the modified equation of the ideal gas temperature
is given, and the relevant experimental explanations are