Mathematics & Nature (2021) Vol. 1 9
cy motion can be achieved to obtain the corresponding
gravitational waves. Since the universal gravitational
constant G can be accurately measured in the laborato-
ry, people are bound to be able to build similar sensors
to detect gravitational waves in the laboratory. It is sug-
gested that gravitational waves of spiral systems should
be widely simulated in the laboratory. The observed re-
sults of gravitational waves in the laboratory are rep eat-
able. The repeatable experimental results can be used to
measure the confidence of gravitational waves detected
by gravitational wave laser interferometer or other sen-
sors. It is of great significance that the detection results
of gravitational waves simulating spiral systems will be
reliable experimental basis for testing different gravita-
tional theories, and finally help us reveal the truth and
falsity of the gravitational wave of the spiral black hole.
It is also a challenge to identify the signal waves when
modern high-speed locomotives start, and the mystery
will eventually be solved.
[1] Abbott, B. P. et al. Observation of gravitational waves from
a binary black hole merger. Physical review letters 116,
061102 (2016).
[2] Einstein, A. N¨aherungweise Integration der Feldgleichungen
der Gravitation,Sitzungsber. K. Preuss. Akad. Wiss. 1, 688
(1916).
[3] Einstein, A.
¨
Uber Gravitationswellen,Sitzungsber. K.
Preuss. Akad. Wiss. 1, 154 (1918).
[4] Einstein, A. & Rosen, N. On gravitational waves. Journal of
the Franklin Institute 223, 43-54 (1937).
[5] Dongfang, X. D. On the Relativity of the Speed of Light.
Mathematics & Nature 1, 202101 (2021).
[6] Dongfang, X. D. Dongfang Com Quantum Equations for
LIGO Signal. Mathematics & Nature, 1, 202106 (2021).
[7] Scientific, L. et al. GW170104: observation of a 50-solar-
mass binary black hole coalescence at redshift 0.2. Physical
Review Letters 118, 221101 (2017).
[8] Abbott, B. P. et al. GW170814: A three-detector observa-
tion of gravitational waves from a binary black hole coales-
cence. Physical Review Letters 119, 141101 (2017).
[9] Abbott, B. P. et al. GW170817: observation of gravitational
waves from a binary neutron star inspiral. Physical Review
Letters 119, 161101 (2017)
[10] Abbott, B. et al. GW151226: Observation of gravitation-
al waves from a 22-solar-mass binary black hole coalescence.
Physical Review Letters 116, 241103 (2016).
[11] Shibata, M. & Nakamura, T. Evolution of three-dimensional
gravitational waves: Harmonic slicing case. Physical Review
D 52, 5428 (1995).
[12] Buonanno, A., Cook, G. B. & Pretorius, F. Inspiral, merger,
and ring-down of equal-mass black-hole binaries. Physical
Review D 75, 124018 (2007).
[13] Damour, T., Nagar, A., Hannam, M., Husa, S. & Br¨ugmann,
B. Accurate effective-one-body waveforms of inspiralling and
coalescing black-hole binaries. Physical Review D 78, 044039
(2008).
[14] Ohme, F. Analytical meets numerical relativity: status of
complete gravitational waveform models for binary black
holes. Classical and Quantum Gravity 29, 124002 (2012).
[15] Centrella, J., Baker, J. G., Kelly, B. J. & van Meter, J. R.
Black-hole binaries, gravitational waves, and numerical rela-
tivity. Reviews of Modern Physics 82, 3069 (2010).
[16] Cutler, C. & Flanagan, E. E. Gravitational waves from merg-
ing compact binaries: How accurately can one extract the
binary’s parameters from the inspiral waveform? Physical
Review D 49, 2658 (1994).
[17] Blanchet, L., Damour, T., Iyer, B. R., Will, C. M. & Wise-
man, A. G. Gravitational-radiation damping of compact bi-
nary systems to second post-Newtonian order. Physical Re-
view Letters 74, 3515 (1995).
[18] Dongfang, X. D. Relativistic Equation Failure for LIGO Sig-
nals. Mathematics & Nature 1, 202103 (2021).
[19] Landau, L. D. & Lifshitz, E. Course of Theoretical Physics
Vol 3 Quantum Mechanics. (Pergamon Press, 1958).
[20] Schiff, L. I. Quantum Mechanics 3rd. New York: M cGraw-
Hill, 61-62 (1968).
[21] Baym, G. & Benjamm, W. Lectures on Quantum Mechanics.
(1969).
[22] Dirac, P. A. M. The principles of quantum mechanics. (Ox-
ford university press, 1981).
[23] Eisberg, R. M., Eisberg, R. M. & Eisberg, R. M. Quan-
tum physics of atoms, molecules, solids, nuclei, and particles.
(1985).
[24] Greiner, W. Relativistic quantum mechanics. Vol. 3
(Springer, 1990).
[25] Griffiths, D. J. & Schroeter, D. F. Introduction to quantum
mechanics. (Cambridge University Press, 2018).
[26] Dongfang, X. D. The Morbid Equation of Quantum Num-
bers. Mathematics & Nature 1, 202102 (2021).
[27] Dongfang, X. D. Dongfang Angular Motion Law and Oper-
ator Equations. Mathematics & Nature 1, 202105 (2021).
[28] Abbott, B. P. et al. Observation of gravitational waves from
a binary black hole merger.
Physical review letters
116
,
061102 (2016).
[29] Hua, L. G. Introduction to number theory. Sci. Press, Bei-
jing, China. pp, 301-333 (1979).
[30] Rosen, K. H. Elementary number theory and its applications.
(Addison-Wesley, 1993).
[31] Contejean, E. & Devie, H. An efficient incremental algorithm
for solving systems of linear Diophantine equations. Infor-
mation and computation 113, 143-172 (1994).
[32] Brualdi, R. A. Introductory combinatorics. (Pearson Educa-
tion India, 2004).
[33] Sanchez, N. Absorption and emission spectra of a
Schwarzschild black hole. Physical Review D 18, 1030 (1978).
[34] Ashtekar, A. & Bojowald, M. Quantum geometry and the
Schwarzschild singularity. Classical and Quantum Gravity
23, 391 (2005).
[35] Hawking, S. W. Black holes in general relativity. Communi-
cations in Mathematical Physics 25, 152-166 (1972).
[36] Schwarzschild, K.
¨
Uber das Gravitationsfeld einer Kugel aus
inkompressibler Fl¨ussigkeit nach der Einsteinschen Theoriey.
Sitzungsber. K. Preuss. Akad. Wiss. 1, 189 (1916).
[37] Kerr, R. P. Gravitational field of a spinning mass as an exam-
ple of algebraically special metrics. Physical review letters
11, 237 (1963).