202205-4 X. D. Dongfang The End of True Second Order Dirac Hydrogen Equation
1 Dirac, P. A. Forms of relativistic dynamics. Reviews of Mod-
ern Physics 21, 392 (1949).
2 Dirac, P. A. M. Relativistic quantum mechanics. Proceedings
of the Royal Society of London. Series A, Containing Pa-
pers of a Mathematical and Physical Character 136, 453-464
(1932).
3 Dirac, P. A. M. The principles of quantum mechanics. (Ox-
ford university press, 1981).
4 Chirgwin, B. & Flint, H. Dirac’s Equation for the Neutron
and Proton. Nature 155, 724-724 (1945).
5 Feynman, R. P. Space-time approach to non-relativistic quan-
tum mechanics. Reviews of modern physics 20, 367 (1948).
6 Thaller, B. The dirac equation. (Springer Science & Business
Media, 2013).
7 Gross, F. Relativistic quantum mechanics and field theory.
(John Wiley & Sons, 1999).
8 Greiner, W. Relativistic quantum mechanics. Vol. 2
(Springer, 2000).
9 Waldenstro/m, S. On the Dirac equation for the hydrogen
atom. American Journal of Physics 47, 1098-1100 (1979).
10 Ciftci, H., Hall, R. L. & Saad, N. Iterative solutions to the
Dirac equation. Physical Review A 72, 022101 (2005).
11 Alhaidari, A. Solution of the Dirac equation with position-
dependent mass in the Coulomb field. Physics Letters A 322,
72-77 (2004).
12 Alhaidari, A. Solution of the Dirac equation with position-
dependent mass in the Coulomb field. Physics Letters A 322,
72-77 (2004).
13 Dongfang, X. D. The End of Teratogenic Simplified Dirac
Hydrogen Equations. Mathematics & Nature 2, 012 (2022).
14 Sukumar, C. Supersymmetry and the Dirac equation for a
central Coulomb field. Journal of Physics A: Mathematical
and General 18, L697 (1985).
15 Karwowski, J. & Kobus, J. The dirac second order equation
and an improved quasirelativistic theory of atoms. Interna-
tional journal of quantum chemistry 30, 809-819 (1986).
16 Kobus, J., Karwowski, J. & Jask´olski, W. Matrix elements of
rq for quasirelativistic and Dirac hydrogenic wavefunctions.
Journal of Physics A: Mathematical and General 20, 3347
(1987).
17 Martin, I. & Karwowski, J. Quantum defect orbitals and the
Dirac second order equation. Journal of Physics B: Atomic,
Molecular and Optical Physics 24, 1539 (1991).
18 Esposito, G. & Santorelli, P. Qualitative properties of the
Dirac equation in a central potential. Journal of Physics A:
Mathematical and General 32, 5643 (1999).
19 Fischer, C. F. & Zatsarinny, O. A B-spline Galerkin method
for the Dirac equation. Computer Physics Communications
180, 879-886 (2009).
20 Kruglov, S. Modified Dirac equation with Lorentz invariance
violation and its solutions for particles in an external mag-
netic field. Physics Letters B 718, 228-231 (2012).
21 Yesiltas.
¨
O. Second order confluent supersymmetric approach
to the Dirac equation in the cosmic string spacetime. The
European Physical Journal Plus 135, 1-15 (2020).
22 Alhaidari, A. Dirac equation with coupling to 1/r singular
vector potentials for all angular momenta. Foundations of
Physics 40, 1088-1095 (2010).
23 Egrifes, H. & Sever, R. Bound states of the Dirac equation
for the PT-symmetric generalized Hulth´en potential by the
Nikiforov–Uvarov method. Physics Letters A 344, 117-126
(2005).
24 Laporte, O. & Uhlenbeck, G. E. Application of spinor analy-
sis to the Maxwell and Dirac equations. Physical Review 37,
1380 (1931).
25 Kalnins, E. G., Miller Jr, W. & Williams, G. C. Matrix op-
erator symmetries of the Dirac equation and separation of
variables. Journal of mathematical physics 27, 1893-1900
(1986).
26 Hostler, L. Relativistic Coulomb Sturmian matrix elements
and the Coulomb Green’s function of the second-order Dirac
equation. Journal of mathematical physics 28, 2984-2989
(1987).
27 Dyall, K. G. Interfacing relativistic and nonrelativistic meth-
ods. I. Normalized elimination of the small component in the
modified Dirac equation. The Journal of chemical physics
106, 9618-9626 (1997).
28 Manakov, N. & Zapriagaev, S. Solution of the Dirac-Coulomb
problem by the second order Dirac equation approach. Phys-
ica Scripta 1997, 36 (1997).
29 Thylwe, K.-E. Amplitude-phase methods for analyzing the
radial Dirac equation: calculation of scattering phase shifts.
Physica Scripta 77, 065005 (2008).
30 Thylwe, K.-E. A new amplitude-phase method for analyzing
scattering solutions of the radial Dirac equation. Journal of
Physics A: Mathematical and Theoretical 41, 115304 (2008).
31 Gerritsma, R. et al. Quantum simulation of the Dirac equa-
tion. Nature 463, 68-71 (2010).
32 Dongfang, X. D. Relativistic Equation Failure for LIGO Sig-
nals. Mathematics & Nature 1, 202103 (2021).
33 Dongfang, X. D. Dongfang Com Quantum Equations for
LIGO Signal. Mathematics & Nature 1, 202106 (2021).
34 Dongfang, X. D. Com Quantum Proof of LIGO Binary Merg-
ers Failure. Mathematics & Nature 1, 202107 (2021).
35 Dongfang, X. D. On the relativity of the speed of light. Math-
ematics & Nature 1, 202101 (2021).
36 Dongfang, X. D. The Morbid Equation of Quantum Numbers.
Mathematics & Nature 1, 202102 (2021)
37 Dongfang, X. D. Dongfang Modified Equations of Molecular
Dynamics. Mathematics & Nature 1, 202104 (2021).
38 Dongfang, X. D. Dongfang Modified Equations of Electro-
magnetic Wave. Mathematics & Nature 1, 202108 (2021).
39 Dongfang, X. D. Nuclear Force Constants Mapped by Yukawa
Potential. Mathematics & Nature 1, 202109 (2021).
40 Dongfang, X. D. Dongfang Solution of Induced Second Order
Dirac Equations. Mathematics & Nature 2, 202203 (2022).
41 Dongfang, X. D. The End of Yukawa Meson Theory of Nu-
clear Forces. Mathematics & Nature 1, 202110(2021).
42 Dongfang, X. D. The End of Klein-Gordon Equation for
Coulomb Field. Mathematics & Nature 2, 202201 (2022).
43 Dongfang, X. D. The End of Isomeric Second Order Dirac Hy-
drogen Equations. Mathematics & Nature 2, 202204 (2022).
44 Dongfang, X. D. Dongfang Angular Motion Law and Opera-
tor Equations. Mathematics & Nature 1, 202105 (2021).
45 Chen, R. The Optimum Differential Equations. Chinese
Journal of Engineering Mathematics, 91, 82-86(2000).
46 Chen, R. The Uniqueness of the Eigenvalue Assemblage for
Optimum Differential Equations, Chinese Journal of Engi-
neering Mathematics 20, 121-124(2003).
47 Li, S.-C. & Li, X.-G. High-order compact methods for the
nonlinear Dirac equation. Computational and Applied Math-
ematics 37, 6483-6498 (2018).