202208-4 X. D. Dongfang Ground State Solution of Dongfang Modified Dirac Equation
sible for this problem to lead to the discovery of the
wave equation similar to the Dirac equation? Of course,
there will always be great resistance to subversive re-
vision of famous theories. Then within the framework
of relativity, what kind of anti mathematical problem-
s are hidden in the algebraic theory of defining angu-
lar quantum numbers in Dirac electron theory, and how
Dirac electron theory goes beyond mathematical rules
to transform the equation of four component wave func-
tion into two-component wave function equation, which
need further research. The discovery and solution of ev-
ery relevant new problem may lead to the revision of
the Dirac equation again, and even lead to completely
different conclusions. Therefore, it is necessary to test
the construction logic of the Dirac equation for the two-
component wave function.
The neutron state solution and the intrinsic ground
state solution of the Dongfang modified Dirac hydrogen
equation exceed the customary concepts of quantum me-
chanics. This pioneering new conclusion indicates that
it seems that every additional quantum number to solve
the intrinsic solution of the modified Dirac equation or
the special solution of the similar equation that satis-
fies the exact boundary will become an inexhaustible
source of writing for theoretical physics or mathematic-
s researchers. However, with each additional quantum
number, the difficulty of accurate solution will increase.
The contribution of this kind of work on mathematics
may be greater than that of physics.
1 Einstein, A. On the electrodynamics of moving bodies. An-
nalen der physik 17, 891-921 (1905).
2 Einstein, A. Relativity: The Special and the General Theory-
100th Anniversary Edition. (Princeton University Press,
2019).
3 Minkowski, H. Die Grundgleichungen f¨ur die elektromag-
netischen Vorg¨ange in bewegten K¨orpern. Nachrichten
von der Gesellschaft der Wissenschaften zu G¨ottingen,
Mathematisch-Physikalische Klasse 1908, 53-111 (1908).
4 Einstein, A. in The Meaning of Relativity, 54-75 (Springer,
1922).
5 Einstein, A. The theory of relativity. (Springer, 1950).
6 Bergmann, P. G. Introduction to the Theory of Relativity.
(Courier Corporation, 1976).
7 Pauli, W. Theory of relativity. (Courier Corporation, 2013).
8 Dirac, P. A. M. General theory of relativity. Vol. 14 (Prince-
ton University Press, 1996).
9 Einstein, A. Die Feldgleichungun der Gravitation. Sitzungs-
ber. K. Preuss. Akad. Wiss., 844-847 (1915).
10 Einstein, A. The foundation of the general theory of relativ-
ity. Annalen Phys. 14, 769-822 (1916).
11 Zhang, Y.-Z. Special relativity and its experimental founda-
tion. Vol. 4 (World Scientific, 1997).
12 Dirac, P. A. M. The quantum theory of the electron. Pro-
ceedings of the Royal Society of London. Series A, Contain-
ing Papers of a Mathematical and Physical Character 117,
610-624 (1928).
13 Dirac, P. A. M. A theory of electrons and protons. Proceed-
ings of the Royal Society of London. Series A, Containing
papers of a mathematical and physical character 126, 360-
365 (1930).
14 Dirac, P. A. M. The principles of quantum mechanics. (Ox-
ford university press, 1981).
15 Dirac, P. A. M. Relativistic quantum mechanics. Proceedings
of the Royal Society of London. Series A, Containing Pa-
pers of a Mathematical and Physical Character 136, 453-464
(1932).
16 Greiner, W. Relativistic quantum mechanics. Vol. 2
(Springer, 2000).
17 Gross, F. Relativistic quantum mechanics and field theory.
(John Wiley & Sons, 1999).
18 Hafele, J. C. Performance and results of portable clocks in
aircraft. (WASHINGTON UNIV ST LOUIS MO DEPT OF
PHYSICS, 1971).
19 Lamb Jr, W. E. & Retherford, R. C. Fine structure of the hy-
drogen atom by a microwave method. Physical Review 72,
241 (1947).
20 Bethe, H. A. The electromagnetic shift of energy levels. Phys-
ical Review 72, 339 (1947).
21 Abbott, B. P. et al. Observation of gravitational waves from a
binary black hole merger. Physical review letters 116, 061102
(2016).
22 Abbott, B. et al. Localization and broadband follow-up of
the gravitational-wave transient GW150914. The Astrophys-
ical journal letters 826, L13 (2016).
23 Abbott, B. et al. GW151226Observation of gravitational
waves from a 22-solar-mass binary black hole coalescence.
Physical Review Letters 116, 241103 (2016).
24 Scientific, L. et al. GW170104observation of a 50-solar-mass
binary black hole coalescence at redshift 0.2. Physical Review
Letters 118, 221101 (2017).
25 Abbott, B. P. et al. GW170814a three-detector observation
of gravitational waves from a binary black hole coalescence.
Physical review letters 119, 141101 (2017).
26 Abbott, B. P. et al. GW170817observation of gravitational
waves from a binary neutron star inspiral. Physical Review
Letters 119, 161101 (2017).
27 Yukawa, H. On the Interaction of Elementary Particles I.
Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).
28 Yukawa, H. & Sakata, S. On the interaction of elementary
particles II. Proceedings of the Physico-Mathematical Society
of Japan. 3rd Series 19, 1084-1093 (1937).
29 Chen, R. Limitations of conservation laws in fractionally in-
ertial reference frames. Physics Essays 24, 413-419(2011).
30 Dongfang, X. D. On the relativity of the speed of light. Math-
ematics & Nature 1, 202101 (2021).
31 Dongfang, X. D. The Morbid Equation of Quantum Numbers.
Mathematics & Nature 1, 202102 (2021).
32 Dongfang, X. D. Dongfang Angular Motion Law and Opera-
tor Equations. Mathematics & Nature 1, 202105 (2021).
33 Dongfang, X. D. Relativistic Equation Failure for LIGO Sig-
nals. Mathematics & Nature 1, 202103 (2021).
34 Dongfang, X. D. Dongfang Com Quantum Equations for
LIGO Signal. Mathematics & Nature 1, 202106 (2021).
35 Dongfang, X. D. Com Quantum Proof of LIGO Binary Merg-
ers Failure. Mathematics & Nature 1, 202107 (2021).
36 Dongfang, X. D. Nuclear Force Constants Mapp ed by Yukawa
Potential. Mathematics & Nature 1, 202109 (2021).
37 Dongfang, X. D. The End of Yukawa Meson Theory of Nu-
clear Forces. Mathematics & Nature 1, 202110(2021).
38 Dongfang, X. D. The End of Klein-Gordon Equation for
Coulomb Field. Mathematics & Nature 2, 202201 (2022).
39 Dongfang, X. D. The End of Teratogenic Simplified Dirac Hy-
drogen Equations. Mathematics & Nature 2, 202202 (2022).